Structural and Hygrothermal Field Monitoring of Thick Continuously Insulated Wall Assemblies Utilized in a Multi-Story Residential Building

Gary Parsons – The Dow Chemical Company Jeff Hansbro - The Dow Chemical Company Craig Buck - The Dow Chemical Company Scott Croasdale - JRS Engineering Joel Schwartz - JRS Engineering

Agenda

- Continuous Insulation
- Vancouver BC Case Study
- Retrofit Structural Design
- Research Questions and Measurements
- Results and Conclusions

Continuous Insulation Hypothesis

- A ci rain screen wall system with:
 - 7/8" Z-girts located 16" oc
 - Attached outboard of insulation with 4 ½" #10 self tapping corrosion resistant screws every 6" oc
- Provides a structurally robust wall
- Dimensionally stable
- Complies with ASHRAE 90.1

Vancouver BC Case Study – Before

Original Wall System

- Cement stucco with wire lath
- Semi-rigid fiberglass insulation (~ one inch thick)
- •3½ inch steel studs with fiberglass batt insulation infill
- Polyethylene air/vapor barrier
- •½ inch interior drywall

Vancouver BC Case Study - After

New (Rehabilitated Wall System)

- が inch acrylic stucco on paper backed lath
- % inch Z-girts at 16 in oc fastened with self-tapping screw fasteners at 6 in oc
- 3 in Type 4 rigid insulation (R15) with taped joints
- SA Membrane
- ½ inch fiberglass faced exterior gypsum sheathing
- Existing 3½ inch steel studs
- Existing ½ inch interior drywall

Structural Design

- Wind and gravity loads are transferred through exterior the vertical Z girts to the insulation and back up wall
- Rigid girt spreads gravity and wind load onto rigid insulation
- Gravity load puts a tension load on the fastener since rotation is constrained by insulation (fastener cannot rotate unless foam compresses) and a shear load
- Wind and gravity put a compression load on the rigid insulation or tension load on fastener

Structural Design

Compression of foam FS=24.9

Fastener Tension FS=25.5

Stucco lath fastener FS=20.8

Research Questions

- What is the dimensional performance of a retrofit wall system designed with only cladding attachment screw penetrations through the insulation?
- What is the hygrothermal performance of the system?

Background Work

Why are we comfortable doing this?

What has Dow done in the past?

- Dow/Knight Kishwaukee College (see case study) plus others in design and construction.
- "Strategies to Successfully Meet the New Energy Codes Using Foam Plastic Continuous Insulation'" Jeff Hansbro, Dow Chemical
- "Requirements for attaching Thermax ci Exterior Insulation and 3 Coat Stucco Cladding to Steel Stud Walls" TER Report – Dow Building Solutions & Jay Crandall, ARES Consulting

• What has JRS done in the past?

 Burien Towne Square in Washington State, Several wood framed buildings, similar roof systems (metal over continuous XPS or polyiso), testing with Knight Wall

Measurement - Instruments

Displacement

BI Technologies Model BI-404 linear displacement sensors . Accuracy 0.085 mm +/- 5%

<u>Hygrothermal</u>

Relative Humidity Sensor Humirel HTM2500

CANTHERM MF52 Thermistor

Measurement-Location and Installation

N Elevation

Y Direction Measurements

Vertical Displacement (2nd floor, South)

Y Direction Measurements

Y Displacement (2nd floor, South)

X Direction Measurements

2nd floor, South

North Facade vs. South Facade

Vertical Displacement Measurements of N and S Panels

Thermal Expansion & Correlation to CTE

Material	Coefficient of Thermal Expansion (m/m K)	Coefficient of Thermal Expansion (in/in F)	ΔT=35°C ΔL over 1.2m (48")	ΔT=22°C ΔL over 1.2m (48")
Mortar (Stucco)	(7.3-13.5) x 10 ⁻⁶	(4.1-7.5) x 10 ⁻⁶	0.3mm-0.57mm	0.19mm-0.36mm
Steel	13.0 x 10 ⁻⁶	7.2 x 10 ⁻⁶	0.54mm	0.34mm
XPS, Polyiso, EPS	62.7 x 10 ⁻⁶	35 x 10 ⁻⁶	2.63mm	1.65mm

Displacement vs Temperature

Displacement vs Temperature

Displacement vs Temperature

Hygrothermal Performance

North Wall

Conclusions

- The ci rain screen system is a structurally robust wall and complies with ASHRAE 90.1.
- X,Y,Z displacement ranges are negligible and not dependent on measurement location.
- Temperature-displacement correlation is poor.
- Hygrothermal performance confirmed to be good, with low condensation risk.
- No stucco performance problems have been reported to date.

Future Work

- Research expected movement of foamed plastic insulation due to differential temperature conditions and under restraint.
- Establish structural design parameters for designing rigid foam to support cladding and to withstand compression and bending loads that will vary depending on the design approach taken.

Questions?

